Search results for " 54D20"
showing 3 items of 3 documents
Urysohn's metrization theorem for higher cardinals
2011
In this paper a generalization of Urysohn's metrization theorem is given for higher cardinals. Namely, it is shown that a topological space with a basis of cardinality at most $|\omega_\mu|$ or smaller is $\omega_\mu$-metrizable if and only if it is $\omega_\mu$-additive and regular, or, equivalently, $\omega_\mu$-additive, zero-dimensional, and T\textsubscript{0}. Furthermore, all such spaces are shown to be embeddable in a suitable generalization of Hilbert's cube.
A new class of spaces with all finite powers Lindelof
2013
We consider a new class of open covers and classes of spaces defined from them, called "iota spaces". We explore their relationship with epsilon-spaces (that is, spaces having all finite powers Lindelof) and countable network weight. An example of a hereditarily epsilon-space whose square is not hereditarily Lindelof is provided.
P-spaces and the Whyburn property
2009
We investigate the Whyburn and weakly Whyburn property in the class of $P$-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn $P$-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (a set-theoretic assumption weaker than CH) implies the existence of a non-weakly Whyburn $P$-space of size $\aleph_2$. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindel\"of weakly Whyburn P-space and a Lindel\"of Whyburn $P$-space is we…